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—Chapter 7— 

The Statistical Growth of Asset Portfolios 

 

 

 

When you’re first thinking through an idea, it’s 

important not to get bogged down in complexity. 

Thinking simply and clearly is hard to do. 

Richard Branson 

 

 

Truth is to be found in the simplicity, and not in the 

multiplicity and confusion of things. 

Isaac Newton 

 

The concept of a general equilibrium has no 

relevance to the real world (in other words, 

classical economics is an exercise in futility). 

George Soros 

 

The teacher who is indeed wise does not bid you to 

enter the house of his wisdom but rather leads you 

to the threshold of your mind.  

Klalil Gibran 

 

 

 

 

7.1 Introduction1  

This chapter considers the nature of asset growth that is subject to normally distributed 

compounding growth rates. As such, the model represents a straightforward development of 

Chapter 6. Nevertheless, the mathematical development is able to shed light on the economy 

– and the market of asset claims on the economy – as an organic process of growth and 

decline; the small firm size effect in the Fama and French three-factor (FF-3F) model; as well 

as observations that portfolios of stocks with high individual volatility appear to outperform 

the market.  

The chapter is arranged as follows. Section 7.2 considers the case for a normal 

distribution as an acceptable model of asset price formation. Section 7.3 considers the 

essential mathematical implications of normally distributed growth rates, before Section 7.4 

adapts the findings for asset price formation. Section 7.5 progresses to consider the 

implications of normally distributed continuously compounding growth rates for the small 

                                                           
1 This chapter develops ideas that were presented in the journal Financial Analyst Journal (Dempsey, 2002).  I 

am indeed grateful and indebted to the editors and reviewers of this journal for supporting and publishing this 

work notwithstanding its unorthodoxy.  
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firm size effect in the FF-3F model, before a final section, Section 7.6, concludes with a 

discussion2. 

 

7.2 Normally Distributed Growth Rates as a Foundation for Asset Price Formation  

When the philosopher Réne Descartes wished to build his philosophy of knowledge on a 

foundation that could not be disputed, he arrived, by a process of continually questioning 

backwards from any supposition he made, at I think therefore I am. The very act of doubting 

one's own existence, he argued, serves to establish the reality of one's own existence, or at 

least of one's thought. In seeking the same for finance, we are prompted to ask how we might 

commence an understanding of asset price formation and growth from such a reliable 

foundation.  

In nature, the growth response, of an organism’s population (of flies, or locusts, or 

bacteria, etc.) does not hold still for a month or a year, and then review the past to determine 

how it must respond. Rather, the process of growth and decline is continuous in occurring 

from the position of that organism’s ever-updated population.  

Such continuously compounding growth was captured for our bank deposit in Chapter 

6.4 (p. 78) by applying a growth rate x% per period as (x/100)/N over many N sub-intervals, 

which with large N was identified as the growth factor ex per period. However, such 

continuously compounding growth fails to capture organic growth in one most essential 

manner: Whereas the bank deposit growth was assumed to be riskless, in nature, very little is 

riskless. The exponential growth of our organism can vary. 

Even in chaos, however, nature typically enforces a form of stability. Thus, nature 

tends to insist that the greater the deviation of the rate of growth or decline from the mean, or 

expected growth rate, µ, the less likely it is to occur. As we saw in Chapter 6.6, the normal 

                                                           
2 Equations that are referenced in subsequent chapters are in bold face. 
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probability distribution identifies such a process, as captured by the growth rate, , and 

standard deviation, σ, of possible growth outcomes about .  

As observed in Chapter 6.11, the central limit theorem implies that repeated 

independent sampling from a distribution (with replacement) leads to a normal distribution of 

outcomes. Thus, if stock price movements occur as new information is forthcoming, with 

independent impacts accumulating to update the stock price in an unforeseen manner, we 

must anticipate that stock returns are normally distributed. The assumption that such a 

process represents at least an approximation of stock price movements has been justified 

based on the evidence of past stock price performance (for example, Fama, 1976, Chapter 2). 

We must bear in mind, however, that in accepting the normal distribution as 

indicative of stock price growth formation, a key assumption is that each updating of the 

stock price is independent from either previous or subsequent updates. If stock prices are 

subject to cascades of either euphoria or pessimism, leading to self-fuelling price movements, 

the assumption of independent stock prices changes is violated. Studies in fact indicate that 

stock returns are more accurately described as exhibiting leptokurtosis, meaning that values 

of the exponential growth rate, x, both near to the mean and highly divergent from the mean 

appear more likely than predicted by a normal distribution for x (Jackwerth and Rubinstein, 

1996). Such leptokurtosis is consistent with recognition that the market is prone to periods of 

self-generated growths and declines, with the outcome that the volatility of stock prices is 

unstable through time.  

Nevertheless, in developing the present chapter’s arguments, we shall, for the present, 

hold to the simplifying assumption that stock price changes are independent in time and that 

the volatility or standard deviation, , of stock returns is fixed in time. The reality of 

“bubbles” and “bursts” will, however, concern us in subsequent chapters. 
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7.3 The Mathematics of Normally Distributed Growth Rates  

As observed in Eq. 6.22 (p. 92), when an asset is subject to normally distributed exponential 

growth rates, the unknown outcome at the end of a period can be expressed as the asset value 

$X0 at the commencement of the period multiplied by ey, where y = +Zσ: 

 The end-of-the-period outcome of investing $X0  

                   at the commencement of the period =  $X0 e
+Zσ                   (6.22) 

where  represents the underlying mean or drift exponential growth rate for the period with 

standard deviation , and Z represents a stochastic (random) drawing from -∞ to +∞ with 

probability determined by the unit normal distribution in Fig. 6.3 (p. 85).  

For such growth, we now define the key concept of return, the “exponential growth 

rate per period”, R, by 

    $X0eR ≡ expected wealth outcome of investing $X0 for a single period     (7.1) 

Or, alternatively (with Eq. 6.15, p. 82) as  

     R ≡ ln [expected wealth outcome of investing $1 for a single period]      (7.2) 

where ln represents the natural log function. If returns are distributed with drift or mean 

growth rate, µ, and standard deviation, σ, we might expect that R must be equal to µ. 

Intriguingly, however, this is not the case. In fact, we have the statistical relation3: 

R =  + ½ 2                                     (7.3) 

To see why Eq. 7.3 is so, consider a binomial process as represented in Fig. 6.9 (p. 120), 

which represents a $1 investment that can grow with equal probabilities to e0.693147 = 2 or e-

0.693147 = ½.  We then have (with Eq. 6.61, p. 107): 

µ = (for 0.69315 and -0.69315) = 0  

and (with Eqs. 6.62 and 6.63, p. 107-108): 

σ (for 0.69315 and -0.69315) = 0.69315.  

                                                           
3 On substituting the definitions for R (Eq. 7.2), , and σ, in Eq. 7.3, Eq. 7.3  may alternatively be expressed:  

ln[expected wealth outcome ] = expected value of [ln(wealth outcome)] + ½ variance of [ln(wealth outcome)]. 
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Since e0.69315 = 2, whereas e-0.69315 = ½, the expected outcome (of the $1 investment) is 

$(2+½)/2 = $1.25, which implies (Eq. 7.2): R = ln(1.25) = 0.2231,                 or 22.31%. 

Notwithstanding that Eq. 7.3 applies to a normal distribution (as opposed to the 

binomial distribution of Fig. 6.9), it is instructive to apply: 

                R =  + ½ 2                                  (7.3) 

to the above binomial example. We then have 

           R = 0 + ½ 0.693152               = 0.2402, or 24.02%, 

which is not such a bad estimate of the value for R in the binomial example (22.31%, above).  

Alternatively, we can see how Eq. 7.3 comes about algebraically by expressing the 

exponential growth rate, R, that delivers the expected wealth outcome in Fig. 6.7 (p. 117) as 

    $eR = $[e


 +

 + e


 -

]/2          (7.4) 

With Eq. 6.12 (p. 78), we express Eq. 7.4 as 

$eR = $[1 +  +  + ½( +)2 + . . . + 1 +  -  + ½( - )2 + . . . ] / 2  

   = $(1 +  + ½2 + ½2 + . . . )        (7.5) 

Allowing that the binomial representation captures the exponential process over small time 

intervals, the exponential growth rate, , and standard deviation, , in Eq. 7.4 relate to the 

exponential return, *, and standard deviation, *, for the actual duration as  = */N and σ 

= */√N, respectively, for large N (Eqs. 6.79 and 6.80, p. 120). Thus, in Eq. 7.5, in the limit 

of continuous growth rates (large N), we are justified in dropping the ½2 term (which 

diminishes as 1/N2), while maintaining the ½2 term (which diminishes as 1/N). Similarly, 

allowing that R also diminishes as 1/N, we have 

                            eR ≃ 1+R                                                                                (7.6) 

And, hence, in the limit of a small time interval, Eq. 7.4 is expressed: 

            1+ R = 1 +  + ½2                 

which is Eq. 7.3. 
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7.4 The Outcome of Normally Distributed Growth Rates  

Investors assess stock prices not in terms of their potential exponential growth characteristics, 

but in terms of their “expected periodic return”, by which we mean the expected percentage 

increase in wealth generated over some discrete period (a month, a year). Such return is 

expressed: 

expected periodic return ≡   

[expected wealth outcome of investing X0 for a single period - X0] / X0   (7.7) 

where X0 is the initial investment. In order to generalize the relationship between the above 

periodic return – which is to say, the “surface” return that market participants seek to 

measure – and the “sub-surface” continuously applied parameters µ and σ (which generate 

the surface periodic return), we combine Eqs. 7.1 and 7.7:  

 1 + expected periodic return ≡ 𝑒𝑅                                                   (7.8) 

Eq. 7.8 (with Eq. 7.3) then provides 

   1 + expected periodic return =  𝒆𝝁+½𝛔𝟐       (7.9) 

or (with Eq. 6.12) 

     expected periodic return ≃  + ½σ2                           (7.10) 

Since ½σ2 is necessarily positive, Eq. 7.10 is the statement that the volatility of returns (σ) in 

an exponential growth process acts to increase the expected periodic return. This is in contra-

distinction with classical Markowitz (1952) portfolio theory, which holds that random 

variations in a portfolio must tend to cancel with each outer.  

 

7.5 Normally Distributed Growth Rates and the Small Firm Size Effect in the FF-3F 

Model  

It is possible that the additional term ½σ2 in Eq. 7.10 adds significantly to a portfolio’s 

returns. For example, Malkiel and Xu (1997) construct portfolios as a function of the 
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idiosyncratic volatility (the volatility of stocks that does not relate to market movements) of 

the portfolio’s stocks measured individually. Their average annual returns range from a low 

of close to 12% for the portfolio with the lowest idiosyncratic volatility (5% per month) to a 

high close to 19% for the portfolio with the highest idiosyncratic volatility (13% per month).  

       The outcome is considered by Malkiel and Xu as “surprising”. This is because the 

conventional view holds that the idiosyncratic or non-market movement of stocks within a 

large portfolio of stocks should cancel out by diversification. This would be the case if 

discrete positive deviations from the expected mean return are equally likely as discrete 

negative deviations.  

       However, as captured by Eq. 7.10, if exponential – as opposed to discrete – returns are 

distributed symmetrically about a mean, μ, we do not have diversification in the sense of 

cancelling of overall effects. Rather, the periodic return benefits from the diversification of 

outcomes returns as ½σ2 where σ is the standard deviation of the individual asset outcomes in 

the portfolio. Thus, with Eq. 7.9, an idiosyncratic volatility of asset returns of 5% per month 

contributes 𝑒½0.052
– 1 = 0.125% to the expected monthly periodic return of a portfolio of 

such assets (annualized = 1.50%), while an idiosyncratic volatility of asset returns of 13% per 

cent per month, contributes 𝑒½0.132
– 1 = 0.85% to the expected monthly periodic return 

(annualized = 10.20%). The difference of 8.7% (10.20% - 1.50%) is actually greater than 

Malkiel and Xu’s measured difference of 7% (19% - 12%). 

       Malkiel and Xu observe further that the volatility of their stocks is correlated closely 

with the inverse of their firm size. They note thereby that their results are consistent with the 

the FF-3F model of Chapter 3, which predicts that portfolios of smaller firms provide rates of 

return that are greater than the returns from portfolios of larger firms. Thus, the small firm 

size effect of the FF-3F model is, on the face of it, explained by the statistical attributes of a 

normal distribution. However, our interpretation of the small firm size effect is vastly 
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different from that of Fama and French, in that Eq. 7.10 interprets the additional small firm 

size return not as the outcome of investors “setting prices” in accordance with risk-return 

expectations, but rather as a straightforward statistical outcome of the idiosyncratic price 

movements of assets themselves.  

 

7.6 Time for Reflection: What have we learned? 

We have considered asset growth as subject to normally distributed continuously 

compounding growth rates. With no additional assumptions, the mathematics of such growth 

has provided a first model of asset growth. Contradicting classical Markowitz (1952) 

portfolio theory, the model predicts that when assets are subject to an exponential growth 

process, random asset variations in a portfolio of assets act to increase the portfolio’s 

expected periodic return.  

The model suggests that the small firm size effect in the FF-3F model may be due to 

the fact that portfolios comprising higher asset volatilities are statistically more likely to 

generate a higher periodic return. The essential insight is that the outcomes are not due to 

investors setting prices in accordance with risk-return expectations, as is generally supposed, 

but rather a straightforward statistical outcome of idiosyncratic asset price volatility itself. 

We may note that the prediction is maintained even when continuously compounding returns 

are not normally distributed, provided they are symmetrically distributed about the mean. 


